22 research outputs found

    Bounded PCA based Multi Sensor Image Fusion Employing Curvelet Transform Coefficients

    Get PDF
    The fusion of thermal and visible images acts as an important device for target detection. The quality of the spectral content of the fused image improves with wavelet-based image fusion. However, compared to PCA-based fusion, most wavelet-based methods provide results with a lower spatial resolution. The outcome gets better when the two approaches are combined, but they may still be refined. Compared to wavelets, the curvelet transforms more accurately depict the edges in the image. Enhancing the edges is a smart way to improve spatial resolution and the edges are crucial for interpreting the images. The fusion technique that utilizes curvelets enables the provision of additional data in both spectral and spatial areas concurrently. In this paper, we employ an amalgamation of Curvelet Transform and a Bounded PCA (CTBPCA) method to fuse thermal and visible images. To evidence the enhanced efficiency of our proposed technique, multiple evaluation metrics and comparisons with existing image merging methods are employed. Our approach outperforms others in both qualitative and quantitative analysis, except for runtime performance. Future Enhancement-The study will be based on using the fused image for target recognition. Future work should also focus on this method’s continued improvement and optimization for real-time video processing

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Forced flow of vapor condensing over a horizontal plate (problem of cess and koh) - Steady and unsteady solutions of the full 2D governing equations

    No full text
    Accurate steady and unsteady numerical solutions of the full 2D governing equations—which model the forced film condensation flow of saturated vapor over a semi-infinite horizontal plate (the problem of Cess and Koh)—are obtained over a range of flow parameters. The results presented here are used to better understand the limitations of the well-known similarity solutions given by Koh. It is found that steady/quasisteady filmwise solution exists only if the inlet speed is above a certain threshold value. Above this threshold speed, steady/quasisteady film condensation solutions exist and their film thickness variations are approximately the same as the similarity solution given by Koh. However, these steady solutions differ from the Koh solution regarding pressure variations and associated effects in the leading part of the plate. Besides results based on the solutions of the full steady governing equations, this paper also presents unsteady solutions that characterize the steady solutions’ attainability, stability (response to initial disturbances), and their response to ever-present minuscule noise on the condensing-surface. For this shear-driven flow, the paper finds that if the uniform vapor speed is above a threshold value, an unsteady solution that begins with any reasonable initial-guess is attracted in time to a steady solution. This long time limiting solution is the same—within computational errors—as the solution of the steady problem. The reported unsteady solutions that yield the steady solution in the long time limit also yield “attraction rates” for nonlinear stability analysis of the steady solutions. The attraction rates are found to diminish gradually with increasing distance from the leading edge and with decreasing inlet vapor speed. These steady solutions are generally found to be stable to initial disturbances on the interface as well as in any flow variable in the interior of the flow domain. The results for low vapor speeds below the threshold value indicate that the unsteady solutions exhibit nonexistence of any steady limit of filmwise flow in the aft portion of the solution. Even when a steady solution exists, the flow attainability is also shown to be difficult (because of waviness and other sensitivities) at large downstream distances

    A quasi one-dimensional method and results for steady annular/stratified shear and gravity driven condensing flows

    No full text
    This paper presents an effective quasi one-dimensional (1-D) computational simulation methodology for steady annular/stratified internal condensing flows of pure vapor. In-channel and in-tube flows are considered for a range of gravity component values in the direction of the flow. For these flows, three sets of results are presented and they are obtained from: (i) a full 2-D CFD based approach, (ii) the quasi-1D approach introduced here, and (iii) relevant experimental results for gravity driven condensing flows of FC-72. Besides demonstrating differences between shear and gravity driven annular flows, the paper also presents a map that distinguishes shear driven, gravity driven, and “mixed” driven flows within the non-dimensional parameter space that govern these duct flows. The paper also demonstrates that ÎŒm-scale hydraulic diameter ducts typically experience shear/pressure driven flows

    Condenser performance, control, and heat transfer enhancement issues resulting from elliptic-sensitivity of shear driven internal condensing flows

    No full text
    This paper presents unsteady computational simulation results and supporting experimental evidence that show a certain fundamental feature of a purely shear driven annular/stratified internal condensing flow with respect to its sensitivity to boundary conditions. This feature is termed “elliptic sensitivity.” Shear driven condensing flows occur in 0g, horizontal channels, and micro-meter scale ducts of any orientation and they often have, or are designed to have, a significant annular/stratified regime. This fundamental feature of the flow allows imposition of several possible values of the mean pressure-difference (unlike the usual situation of having only one pressure difference value) for a given set of quasi-steady values of mass-flow rate, inlet or outlet pressure, and a steady cooling approach for the condensing-surface. By a quasi-steady time-varying flow variable, it is meant that the variable exhibits a steady-in-the-mean value with suitable time periodic fluctuation (s) superposed on it. For most common cooling approaches, when a quasi-steady value of the pressure-difference is changed (even by an amount in the range of 5 – 200 Pa) in time to another quasi-steady value, it often triggers significant changes in the mean condensate thickness, heat transfer rates which induces significant thermal transients, and system characteristics outside the condenser. However if the system always allows the flow to self-seek a “natural” pressure-difference across the condenser, then purely shear driven flows behave like gravity driven and dominated flows in the sense that they are able to achieve a unique and stable realization of a quasi-steady flow with a unique (termed “natural”) value of the pressure-difference. The reported “elliptic” sensitivity feature is absent for gravity dominated flows for which gravity is so strong that it determines the condensate motion as well as its mean interface location

    Annular/Stratified internal condensing flows in millimeter to micrometer scale ducts

    No full text
    This paper presents computational simulations for internal condensing flows over a range of tube/channel geometries — ranging from one micro-meter to several millimeters in hydraulic diameters. Over the mm-scale, three sets of condensing flow results are presented that are obtained from: (i) full computational fluid dynamics (CFD) based steady simulations, (ii) quasi-1D steady simulations that employ solutions of singular non-linear ordinary differential equations, and (iii) experiments involving partially and fully condensing gravity driven flows of FC-72 vapor. These results are shown to be self-consistent and in agreement with one another. The paper demonstrates the existence of a unique solution for the strictly steady equations for gravity and shear driven flows. This paper also develops useful correlations for shear driven and gravity driven annular stratified internal condensing flows (covering some refrigerants and common operating conditions of interest). A useful map that marks various transitions between gravity and shear dominated annular stratified flows is also presented. For the micro-meter scale condensers, computations indentify a critical diameter condition (in non-dimensional terms), below which the flows are insensitive to the orientation of the gravity vector as the condensate is always shear driven. Large pressure drop, importance of surface tension, and vapor compressibility for ÎŒm-scale flows are also discussed. With the help of comparisons with 0g flows, the paper also discusses effects of transverse gravity on the solutions for horizontal channel flows

    A femtosecond study of the interaction of human serum albumin with a surfactant (SDS)

    No full text
    The interaction of a protein, human serum albumin (HSA) with a surfactant (sodium dodecyl sulfate, SDS) was studied by femtosecond up-conversion. HSA was labeled covalently with a probe (CPM, 7-dimethylamino-3-(4-maleimidophenyl)-4-methylcoumarin). Binding of SDS to HSA is found to accelerate the solvation dynamics ~1.3-fold. The solvation dynamics in HSA displays two time components: 30 ps (20 %) and 800 ps (80 %). When ~10 SDS molecules bind to HSA the components are 15 ps (40 %) and 800 ps (60 %). It is argued that SDS may increase the solvent exposure of the probe (CPM); it may also displace the buried water molecules in the immediate vicinity of CPM
    corecore